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INTRODUCTION 

1. The necessity of the thesis 

Nonlinear buckling and buckling are important problems in analyzing 

the mechanical behavior of engineering structures in general and 

construction engineering in particular. The type of advanced carbon 

nanotube-reinforced composite material with modified mechanical 

properties that has received special attention in recent years is called 

Functionally graded carbon nanotube-reinforced composite (FG-

CNTRC). Due to their superior thermo-mechanical properties, they can 

be widely used in engineering structures subjected to severe loads. 

Stiffening plate and shell structures with stiffeners is a common method. 

Current design standards only focus on the overall linear buckling design 

of isotropic plates and shells. Therefore, there is a need for theoretical 

research on these problems as a basis for developing structural design 

standards. Based on the above reasons, this thesis researches: "Nonlinear 

elastic buckling of construction structures in the forms of FG-

CNTRC plates and shells taking into account stiffening methods". 

2. Research objectives of the thesis 

i) Propose methods to stiffen the FG-CNTRC plates and shells 

ii) Develop suitable improved smeared stiffener techniques for stiffened 

structures 

iii) Analysis of buckling and postbuckling behavior of FG-CNTRC 

civil structures in the forms of plates and shells with stiffeners 

iv) Evaluate the effects of input parameters and other parameters of civil 

structures in the forms of FG-CNTRC plate and shell structures 

3. Subject and scope of research of the thesis 

Research object: plates and shells such as FG-CNTRC rectangular 

plates and cylindrical shells, considering the stiffening methods. 

Research scope: nonlinear buckling and postbuckling problems. 

4. Research Methodology 

Theoretical research method based on analytical approach. 

5. Structure of the thesis: Includes introduction, 4 chapters, 

conclusion, list of author's scientific works, and references. 
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Chapter 1. OVERVIEW OF THE RESEARCH PROBLEM 

1.1. Nanocomposite materials and applications in construction  

1.1.2. Functionally graded carbon nanotube reinforced composite (FG-

CNTRC) 

With the discovery of carbon nanotubes (CNTs) by Iijima [58, 59], 

CNTs have begun to receive research attention and application in many 

different fields of science and technology. Originating from the idea of 

FGM, the functionally graded (FG) distribution model of CNT was first 

proposed by Shen [119]. Many studies on the thermomechanical behavior 

of FG-CNTRC beams, plates, and shells were performed. 

1.1.3. Application of Nanocomposite materials in construction 

   

   
Fig. 1.1. Application of advanced composite materials for constructions 

[62, 94, 103, 110] 

1.2. FG-CNTRC, buckling and postbuckling, and studies on thermo-

mechanical behavior of FG-CNTRC structures 

1.2.1. Distribution rules and mechanical properties of FG-CNTRC  

According to the mixture rule, the shear modulus and effective Young's 

modulus can be expressed as [119-129] 

32
11 1 11

22 22 12 12

, , ,CNT m CNT m CNT m
CNT m CNT m CNT m

V V V V
E V E V E

E E E G G G


        (1.1) 
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The thermal expansion coefficients in the CNT direction and the 

orthogonal direction can be expressed as [119-129] 

   
11 11

22 12 22 12 11
1 1

    

        

,

,

CNT m

CNT m

CNT CNT m m

CNT m

V V

V V
  (1.5) 

Poisson ratio is determined as follows [119-129] 

12 12
    * ,CNT m

CNT mV V                                      (1.6) 

The matrix material chosen is Poly (methyl methacrylate) (PMMA). 

Temperature-dependent properties are assumed to be 0 34  .m , 

  645 1 0 0005 10    . /Km T , and  3 52 0 0034 . .mE T GPa . 

1.2.3. Studies on the thermomechanical behavior of FGM and FG-

CNTRC plates and shells 

1.2.3.1. FGM plate and shell structures 

Many international authors researched FGM plates and shells such as 

Shen and Wang [125], Chen et al. [20], Huang and Han [53-55], Sofiyev 

and Schnack [131], and Vietnamese authors [7, 13, 28, 29, 89, 142, 145]. 

1.2.3.2. Stiffened FGM plate and shell structures 

Dao Huy Bich et al. [11], Najafizadeh et al. [98]. 

1.2.2.3. FG-CNTRC plate and shell structures 

International authors analyzed FG-CNTRC plate and shell structures 

such as Shen et al. [119-124, 126-129, 149], Kiani et al. [61, 63, 64, 65, 

66, 67, 95, 96, Lei et al. [74, 75, 76], Liew et al. [87], Sofiyev et al. [133-

135], and Vietnamese authors [ 25, 30-41, 8, 92, 51, 52, 143, 144…]. 

1.2.3.4. Auxetic structures 

Typical research works on Auxetic structures are: Zhu et al. [158]. 

Nguyen Van Quyen et al. [109]. Pham Hoang Anh et al. [9] Le Ngoc Ly 

et al. [92] Lan et al. [71] Li et al. [79-82] 

1.3. Potential application of FG-CNTRC shell plate structures in 

construction structures 

With the superior characteristics of FG-CNTRC compared to traditional 

metal and composite materials, there is great potential for application in 

many construction components and especially special projects with 

particular requirements in bearing capacity, durability, and reliability. 
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Some potential applications can be seen such as water transport pipes, 

high-pressure compressed air transport, and cylindrical structures in 

marine constructions, and other special construction structures... 

1.4. Domestic and international achieved results and further research 

requirements 

1.4.1. Domestic and international achieved results  

1) Linear and nonlinear static buckling problems of FG-CNTRC plate 

and shell structures were investigated relative-comprehensively. 

2) Linear and nonlinear dynamic buckling and vibration problems of 

FG-CNTRC structures were also investigated relative-comprehensively. 

3) The lack of research on the stiffened plate and shell structures with 

stiffeners can be observed. 

4) Studies on the FG-CNTRC plates and shells with Auxetic core were 

not mentioned much. 

1.4.2. Further research requirements 

1) Improved smeared stiffener techniques for FG-CNTRC stiffeners 

need to be developed. 

2) Research on nonlinear buckling and postbuckling of FG-CNTRC 

plates with FG-CNTRC stiffeners in thermal environment. 

3) Research on buckling and postbuckling of the FG-CNTRC 

cylindrical shells with stiffeners subjected to different types of loads. 

4) Research on nonlinear buckling and postbuckling of FG-CNTRC 

cylindrical shells with Auxetic core. 

Chapter 2. NONLINEAR BUCKLING OF FG-CNTRC 

CYLINDRICAL SHELLS STIFFENED BY FG-CNTRC 

STIFFENERS SUBJECT TO EXTERNAL PRESSURE OR AXIAL 

COMPRESSION IN THERMAL ENVIRONMENT 

This chapter proposes a stiffener design option made of FG-CNTRC for 

the FG-CNTRC cylindrical shells. The improved smeared stiffener 

technique for FG-CNTRC stiffeners is developed based on anisotropic 

beam theory combined with Lekhniskii's classical smeared stiffener 

technique idea. The governing equations are established based on Donnell 

shell theory, including von Kármán geometric nonlinearity and Pasternak 
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elastic foundation model. The Galerkin method is applied to obtain a 

system of equilibrium equations in nonlinear algebraic form. 

2.1. The FG-CNTRC cylindrical shells with FG-CNTRC stiffeners 

and the governing equations 

FG-CNTRC cylindrical shells in this thesis are studied with a 

coordinate system Oxyz  place on the middle surface of the shells as 

shown in Fig. 2.1. The shell is subjected to external pressure q  uniformly 

distributed on the shell surface or axial compression p  uniformly distributed 

on the edges and surrounded by two-parameter Pasternak elastic foundation. 

In addition, the FG-CNTRC cylindrical shells are stiffened by FG-

CNTRC stiffeners in the circular or longitudinal directions on the inner 

surface of the shell. 

     Expressions for extension forces , ,x y xyN N N  and moments

, ,x y xyM M M  of stiffened FG-CNTRC cylindrical shells can be obtained 

by summing the stiffnesses of the stiffened shell, which are expressed as 
0

0

1
11 12 11 12

0

112 22 12 22
2

66 66
2

11 12 11 12
2

12 22 12 22
2

66 66
2

0 0

0 0

0 0 0 0

0 0

0 0

0 0 0 0

2

 
 
                                                  
 

   

x

T
y

x x

xyy y

xy

x

y

xy

N A A B B
N A A B B

wN A B

xB B D DM
wB B D DM
yB DM
w

x y

2

2

 0

 0

 
 
 
 
 
 
 
 
 
 

,

T

T

x

T

y

  (2.8) 

The stiffnesses of the shell with longitudinal stiffeners are obtained as 

     11 11 11 11 11 11 11 11 11
, , , , , , ,sh sh sh stff L stff L stff LA B D A B D A B D                (2.9) 

 

 
22 12 66 22 12 66 22 12 66

22 12 66 22 12 66 22 12 66

, , , , , , , , ,

, , , , , , , , ,sh sh sh sh sh sh sh sh sh

A A A B B B D D D

A A A B B B D D D
            (2.10) 

Stiffnesses of longitudinal stiffeners 
11 11 11
, ,stff L stff L stff LA B D    are calculated   
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11 1111 11

11 11 11 11

1

22 22 12 12

66 6612 12

22 2212 12 12 12

66 66

0 0

0 00 0 0 0

0 00 0

0 00 0

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ

L Lstff L stff L

stff L stff L L L

L L L L

L LL L

L LL L L L

L L

A BA B

B D B D

A B A B

A BA B

B DB D B D

B D

 

 



  
   
    

   
  

         
     

   

,







  (2.14) 

with L  is the integral region over the height of the stiffeners. 

Internal thermal forces of the shells with L stiffeners can be determined 

as follows 

 1 1 1 1 1
, ,sh stff sh

x x x y y               (2.18) 

and for L stiffeners are presented by 

 1 11 11 12 22
,

L

L

stffstff

x L

stff

b
Q Q Tdz

d 

             (2.21) 

 
Fig. 2.1. Geometric parameters and coordinate system of FG-CNTRC 

cylindrical shells stiffened by FG-CNTRC stiffeners surrounded by 

elastic foundation 

The compatibility equation can be obtained directly from Eq. (2.7), as  
2 0 2 02 0 2 2 2 2

2 2 2 2 2

1
0.

y xyx w w w w

y x x y R x x y x y

        
     

        
  (2.22) 

Equilibrium equations according to nonlinear Donnell shell theory are [3] 
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2 22

2 2

2 2 2 2 2

1 22 2 2 2

0 0

2

2

, ,

,

xy xy yx

xy y yx

x xy y

N N NN

x y x y

M M NM

x x y y R

w w w w w
N N N q K w K

x x y y x y

  
   

   

 
  

   

     
        

      

(2.23) 

The third equation of (2.23) can be rewritten by substituting Eqs. (2.8) 

and (2.24) into this equation, leading to  

 

 

4 4 4

11 12 21 66 224 2 2 4

4 4 4 2 2

21 11 22 66 124 2 2 4 2 2

2 2 2 2 2 2 2

1 22 2 2 2 2

4

2

1
2 0

* * * * *

* * * * *

.

w w w
D D D D D

x x y y

w
B B B B B
x x y y y x

w w w w
q K w K

x y x y x y R x x y

  
     

   

        
     

     

          
        
         

(2.25) 

The deformation compatibility equation (2.22), combined with 

equations (2.8) and (2.24) becomes  

 

 

4 4 4 4 4

11 66 12 22 21 124 2 2 4 4 4

2
4 2 2 2 2

11 22 66 2 2 2 2 2

2

1
2 0

* * * * * *

* * * ,

w w
A A A A B B
x x y y x y

w w w w w
B B B

x y x y x y R x

       
    

     

     
       

       

  (2.26) 

2.2. Boundary conditions and solution methods 

The deflection of the shell satisfies the boundary condition (2.27) in an 

approximate sense chosen in the form of three terms as follows [53, 54] 

2

0 1 2

 
     sin sin sin ,

m x ny m x
w

L R L
                   (2.28) 

Substituting expression (2.28) into Eq. (2.26), the stress function form 

is determined by 

 
1 2

2 2
0

3 4

2 2

3

2 2

cos cos

sin sin sin sin ,
y

m x ny
Q Q

L R

hxm x ny m x ny phy
Q Q

L R L R


  

 
   

   (2.29) 
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Substituting the expressions (2.28) and (2.29) into Eq. (2.25). The 

Galerkin method is then applied to the three deflection terms, leading to 

 0 1 2 0
2

2

   
  ,

yh K
q

R
                            (2.31) 

 

 

42 4 4 4 4
3 4 4 4 2

1 1 1 24

22 11

2 2 2 2 2 2 42 2 2 2
21 0

1 2 12 2 2

11

2
22 2 2 4 2

1 1 1 2 1

1 1

16 16

42

4

0

* *

*

*

,

y

B m n L L
D f m n
A A A R R A E

n L L R B m hn LBm n L

AR A R R

Ln
m L hp L K L K m

R

       
              

      

   
      
  

  
           

   

 (2.32) 

4 2 2 22 2
2

21 12 2 2

11

4 4 2 2 2 2

21
11 21 22 2

11

2

2 2 2

2

1
4

16 2

1 4
4 4

4

1 1 1

2

            
           

           

            
          

         

 
   

 

*

*

*
* *

*

m m n L B m n
B

L R L A m R A L R

m m m L R B m
D B

L L R L A m

mn
m n

R A

2

1 2

2 2

0

2 1 2 0 2 2

3
0

4

 
  

 

       
               

     
.y

E

h m m
q ph K K

R L L

(2.33) 

The closed condition is added in the average sense [53-55] 

     
2

0 0

0






  .
R L v

dxdy
y

                           (2.34) 

2.2.1. Nonlinear buckling analysis of FG-CNTRC cylindrical shells 

with FG-CNTRC stiffeners subjected to external pressure 0p  

Substituting 
0

 y
 in expression (2.31) into Eqs. (2.32), (2.33), and (2.35), 

and applying 0p  , the new forms of the equilibrium equations is 

232 34 33

0 1 2

31 31 31

1

2 2 2 2
       ,

J J J
q

J J J
       (2.36) 

2 2

11 12 0 13 1 14 2 15 2 16
0          ,J J J J J J q     (2.37) 
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                     2 23 2

1

21 22 2

 
 

 
,

J

J J
                         (2.38) 

Substituting 2

0 1
,    from Eqs. (2.36) and (2.38) into Eq. (2.37), as 

 
12 34 12 23 32 12

11 14 2

31 31 21 22 2

2 23 2 31

15 2 13

21 22 2 31 16 12 33

2 2 2

2

2

    
         

     


   

  
.

J J J J J J
q J J

J J J J

J J
J J

J J J J J J

 (2.39) 

The maximum deflection is obtained as  

 

1 2

33 34 32 23 2 23 22
max

31 31 31 21 22 2 21 22 2
2 2 2 2

   
      

    
.

J J J J J
W q

J J J J J J J
 (2.42) 

2.2.2. Nonlinear buckling analysis of FG-CNTRC cylindrical shells 

with FG-CNTRC stiffeners subjected to axial compression 0q  

Substitute the average stress in the 
0

 y
inner ring direction (2.31) into 

equations (2.32), (2.33) and (2.35), and let 0q , get 

           232 35 34

0 1 2

31 31 31

1

2 2 2 2
       ,

J J J
p

J J J
      (2.43) 

 2 2

11 12 0 13 1 14 2 15 2 17
0          ,J J J J J J p     (2.44) 

         2 24 2 23 2

1

21 22 2

  
 

 
,

J p J

J J
          (2.45) 

Substituting 0
 and 2

1
 from equations (2.43) and (2.45) into Eq. (2.44), 

the relation of p  and 2
  can be determined as follows 

234 32 23 2
11 14 2 12 2 12 15 2 12

13 31 21 22 2

1

13 23 2 32 13 24 2 3524 2
12 17 12

21 22 2 31 21 22 2 21 22 2 31

1

2 2 2

2 2



 
         

 

  
    

      
.

J J J
p J J J J J J

J J J J

J J J J J JJ
J J J

J J J J J J J J

(2.46) 

Substituting equations (2.43) and (2.45) into expression (2.41), the 

maximum deflection of the shell can be rewritten as 

32 24 2 23 2 35 34 24 2 23 22

31 21 22 2 31 31 21 22 2

W
2 2 2 2

max .
J J p J J p J J p J

J J J J J J J

     
    

   
 (2.48) 
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The shortening x  is determined as 

 

32 24 2 23 2 3512 1 2 2
22 12 1

31 21 22 2 31

2 22

34 24 2 23 22
22 1 12 1

31 21 22 2

2 2 2 2

1
+

2 4 8

*
* *

* * .

x

T T

x y

J J p J J pA RK
A ph A RK

J J J J

J J p Jm m
A A

J L L J J

    
     

 

        
         

    

(2.50) 

2.4. Applying theoretical results to nonlinear buckling analysis of FG-

CNTRC cylindrical shells with FG-CNTRC stiffeners subjected to 

external pressure 

 
Fig. 2.5. Effect of rib direction on 

postbuckling curve of C-FG-

CNTRC cylindrical shell 

 
Fig. 2.9. Effect of the CNT 

distribution law on the postbuckling 

curve of the C-FG-CNTRC 

cylindrical shell 

2.5. Applying theoretical results to nonlinear buckling analysis of FG-

CNTRC cylindrical shells with FG-CNTRC stiffeners subjected to 

axial compression 

 
Fig. 2.12. Effect of FG-CNTRC 

stiffener direction on postbuckling 

curve  maxp W h  of the L-FG-

CNTRC shell 

 
Fig. 2.22. Effect of CNT volume 

fraction on postbuckling curve

 maxp W h  of the C-FG-CNTRC 

shell 
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2.6. Conclusion of Chapter 2 

From the numerical results, the outstanding remarks are obtained 

1. FG-CNTRC stiffeners largely affect the critical buckling pressure 

and postbuckling load-carrying capacity of the shells. The maximum 

critical buckling pressure is achieved with the FG-V CC shells. 

2. The snap-through phenomenon was not observed for the L-FG-

CNTRC cylindrical shell in all numerical investigations. 

3. Geometric parameters, thermal environment, elastic foundation, and 

CNT volume fraction largely affect the buckling behavior of the shell. 

4. FG-CNTRC stiffeners largely improve the critical axial compression 

and postbuckling capacity of the FG-CNTRC cylindrical shells. 

5. The designs of CNT distribution rules of the shell and stiffeners 

largely affect to the effect of the FG-CNTRC stiffeners. 

6. Pasternak elastic foundation, geometrical parameters, material, and 

thermal environment largely affect the buckling behavior of the shell. 

Chapter 3. NONLINEAR BUCKLING OF FG-CNTRC 

CYLINDRICAL SHELLS UNDER TORSION AND STIFFENED 

BY FG-CNTRC STIFFENERS OR AUXETIC CORE 

The FG-CNTRC cylindrical shells are considered in a more complex 

load case, that is torsion load, with two cases of the FG-CNTRC 

cylindrical shells with stiffeners and with Auxetic core. 

3.1. Material and structural designs 

3.1.1. Design of FG-CNTRC cylindrical shells with FG-CNTRC stiffeners 

The FG-CNTRC cylindrical shells with stiffeners, the distribution rules 

of CNTs, and the coordinate system are similar to Chapter 2. 

3.1.2. Design of sandwich FG-CNTRC cylindrical shells with Auxetic core 

An FG-CNTRC sandwich cylindrical shell with an Auxetic core 

subjected to uniformly distributed torsion  is considered. The 

geometrical parameters of the cylindrical shell, honeycomb Auxetic core, 

and FG-CNTRC coating layers are shown in Fig. 3.1. 

Instead of calculating with a complex honeycomb core structure, we 

can analyze the behavior of the core layer as an anisotropic homogeneous 

layer with elastic constants estimated as follows [150] 
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 

 

3

2 1

11 3 2 2 2

1 2
1

   


        

sin
,

cos tan sec

Aux mE E    (3.7) 

  

3

2
22 2 2

1 2




     
,

cos sin tan

Aux mE E             (3.8) 

 

3

2
12

1 1
1 2




   
,

cos

Aux mG E                                   (3.9) 

  

 

2

2 1

12 2 2 2 2

1 2

1

1

    
  

        

sin sin
,

sec tan cos

Aux          (3.10) 

 
  

2

2

21 2 2

2 1

1 
  

    

sin
,

tan sin

Aux                     (3.11) 

 
Fig. 3.1. Design of the FG-CNTRC cylindrical shell with Auxetic core 

3.2. Nonlinear equilibrium equation system and stress function 

The expressions of the stiffness matrix components and internal 

thermal forces are determined as 
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     , , , , , , ,CNTRC CNTRC CNTRC Aux Aux Aux

ij ij ij ij ij ij ij ij ijA B D A B D A B D    (3.12) 

1 1 2 2
0 0, ,T T T T

x y x y                (3.13) 

where 

 

     2 21 1 1 2 6

, ,

, , , , , , , ,
out inn

CNTRC CNTRC CNTRC

ij ij ij

CNTRC out CNTRC inn

ij ij

A B D

Q z z dz Q z z dz i j 

 



  
   (3.14) 

     21 1 2 6, , , , , , , ,
Aux

Aux Aux Aux Aux

ij ij ij ijA B D Q z z dz i j


    (3.15) 

with out  and inn  is the thickness region of the outside and inside 

CNTRC layers, Aux is the thickness region of the Auxetic core. 

The equilibrium equations of the cylindrical shell according to Donnell 

shell theory and von-Karman geometric nonlinearity, is presented as 

0


 
 

,
xyx
NN

x y                                                             (3.16) 

0
 

 
 

,
xy yN N

x y                                                             (3.17) 

2 22 2 2 2

2 2 2 2
2 2 0,

xy y yx
x xy y

M M NM w w w
N N N

x x y y R x x y y

    
      

       
(3.18) 

3.3. Deflection form and Galerkin method 

The three-term solution form of the deflection can be chosen as follows [55] 

    2

0 1 2
       , sin sin sin ,w w x y x y x x     (3.22) 

The expression for the stress function can be determined by substituting 

the deflection form in equation (3.22) into equation (3.20), after some 

calculations to obtain 

 1 2

3 4

5 6

cos2 cos2

cos cos

3 3
cos cos ,

F x F y x

F y x F y x

F y x F y x hxy

     

       
                    

       
                      

   (3.23) 
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  Substituting equations (3.22) and (3.23) into the equilibrium equation 

(3.19), then applying the Galerkin method, the new system of balance 

equations in algebraic form is obtained as follows 

      2 2 2

1 2 2 3 1 4 2
2 0           ,h N N N N                       (3.24) 

2 2

5 2 6 1 7 1 2
0       ,N N N                                     (3.25) 

Circular shell structures rotate tightly like cylindrical shells subject to 

torsion and must also satisfy the closed perimeter condition below [55] 
2

0 0

0






  .
R L v

dxdy
y                                      (3.26) 

Substituting the relations (2.7), (2.8), and (2.24), taking into account 

(3.22), into equation (3.26), we have 

  2 2

0 2 11 1 12 1 1

1
2 2 0

4

* * .T T

y xR A A R                     (3.27) 

Eliminating 0
  and 2

  from Eqs. (3.24), (3.25), and (3.27) and solving 

 accordingly 1
 , contact expression - 1

  receive the following 

   

2
2 2

22 6 1 6 1

1 3 1 42 2 2

5 7 1 5 7 1

2 21

2 2 2

    
         

          

.
N N N

N N N
h N N N N

(3.28) 

When 
1

0  , equation (3.28) leads to 

1

22
.upper N

h
  

                           (3.29) 

The dimensionless maximum deflection is rewritten in terms of the 

linear deflection amplitude of the postbuckling state, resulting 

 
 

22 2
11 1 12 1 6 11 1

2

5 7 1

2

8 4

     
    

 

* *

max .

T T

y xR A A NR
W W h

h h h h N N
(3.30) 

The torsion angle is defined in the average sense as follows [55] 

  
2 22

1
66 2

0 0

1

2 4

   
      

   
 

* .
R L nu v

dxdy A h
RL y x R

      (3.31) 

3.5. Applying theoretical results to nonlinear buckling analysis of FG-

CNTRC cylindrical shells FG-CNTRC stiffeners subjected to torsion 
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Fig. 3.6. Effect of stiffener direction 

on torsional postbuckling curve 

W  of C-FG-CNTRC cylindrical 

shells 

 
Fig. 3.14. Effect of thermal 

temperature on torsional 

postbuckling curve  of FG-

CNTRC cylindrical shells  

3.6. Applying theoretical results to nonlinear buckling analysis of FG-

CNTRC cylindrical shells with Auxetic core subjected to torsion  

 
Fig. 3.17. Torsional postbuckling 

curves W  with three CNT 

distribution rules of sandwich 

cylindrical shell with Auxetic core 

 
Fig. 3.26. Torsional postbuckling 

curves -  with different 

geometrical parameters of 

cylindrical shell with Auxetic core 

3.7. Conclusion of Chapter 3 

For FG-CNTRC cylindrical shell with stiffeners subjected to torsion 

1. The torsion load capacity of the FG-CNTRC shells with FG-CNTRC 

stiffeners is much greater than that of corresponding unstiffened shells. 

2. The greatest effect of stiffeners is obtained for circumferential stiffeners. 

3. The angle of the pre-buckling straight line  remains unchanged 

in cases with and without stiffeners. 
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For sandwich FG-CNTRC cylindrical shells with Auxetic core 

1. The critical buckling torsion of the L-FG-CNTRC cylindrical shell is 

much smaller than that of the C-FG-CNTRC cylindrical shell 

2. The influence of the geometric properties of the Auxetic core on the 

critical torsional buckling load of the shell is insignificant. 

3. The thickness of the Auxetic core strongly influences the critical 

buckling torsion and the postbuckling load-carrying capacity of the shells. 

Chapter 4. NONLINEAR BUCKLING OF FG-CNTRC PLATES 

STIFFENED BY FG-CNTRC STIFFENERS UNDER COMBINED 

LOADS ACCORDING TO HIGHER-ORDER SHEAR 

DEFORMATION THEORY 

4.1. The design of the FG-CNTRC plates stiffened by the FG-CNTRC 

stiffeners 

Consider the FG-CNTRC rectangular plates stiffened by FG-CNTRC 

stiffeners, subjected to axial compression xP  and external pressure q  in 

thermal environment. Where, CNT is reinforced into the isotropic matrix 

in the longitudinal or transverse directions of the plates (Fig. 4.1). 

 
 

Fig. 4.1. Design of the stiffeners of the FG-CNTRC plates and geometric 

parameters of plates and stiffeners 
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4.2. Establishing the governing equations 

HSDT is used taking into account the geometric imperfection of the 

plates with von Kármán geometric nonlinearity. 

Expressions of internal forces iN , moments iM , and the higher-order 

moments iT  of the FG-CNTRC stiffened plates are expressed as  
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where 

 

   

, , , , ,

, , , , , , , , , , ,

ij ij ij ij ij ij

P P P P P P

ij ij ij ij ij ij ij ij ij ij ij ij

A B D C F L

A B D C F L A B D C F L 
    (4.8) 

 
2

2 3 4 6

2

1, , , , , ( , , , , , ) ,

h

P P P P P P P

ij ij ij ij ij ij ij
h

A B D C F L Q z z z z z dz



   (4.9) 
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 (4.10) 

and 

 
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1 1 1 11 11 12 22 1
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1 1 1 12 11 22 22 1
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 
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 


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
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,

,

h

xT x stff P P P P x stff

x
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h

yT y stff P P P P y stff

y
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Q Q Tdz

Q Q Tdz

 (4.11) 
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and 1 11 11 12 22 1
0



          , ,
stffxS stff stff stff stff y stff

stff

b
Q Q Tdz

d
 for the case of 

plates stiffened by stiffeners in the direction x   

1 11 11 12 22 1
0 



          , ,
stffy stff stff stff stff stff x stff

stff

b
Q Q Tdz

d
 for the case of the 

plates stiffened by stiffeners in the direction y . 

The expressions for shear forces and higher-order shear forces are 

calculated as follows 
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            (4.12) 

where 
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44 55 66 77
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, , ,

, , , , , , ,P P P P

H H H H

H H H H H H H H 
  (4.13) 

and the plate is stiffened by stiffeners in the direction y  of the plates 
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 
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 

    (4.17)

 

with   is the integral region over the height of the stiffeners. 

The equilibrium equation system of FG-CNTRC imperfect plate with 

stiffeners according to HSDT is written as follows [102] 
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4.3. Boundary conditions and solution methods 

Three simply supported boundary conditions are considered as follows: 

- FG-CNTRC stiffened plates with four movable edges (FFFF) 

- FG-CNTRC stiffened plates with two movable edges 0,x x a   and 

the two remaining immovable edges 0 ,y y b  (FIFI) 

- FG-CNTRC stiffened plates with four immovable edges (IIII) 

The solution forms of deflection, imperfection, and rotations are chosen 

in the following approximate forms [2, 7, 8, 102] 

      

       

sin sin , sin sin ,

cos sin , sin cos ,x x y y

w W x y w h x y

x y x y
   (4.27) 

By substituting Eq. (4.27) into Eq. (4.23), after some calculations, the 

stress function can be obtained as 

2 2

1 2 3 0 0

1 1
2 2

2 2
        cos cos sin sin x yf f x f y f x y N y N x , (4.28) 

Substituting the relations (4.27) and (4.28) into Eqs. (4.24)-(4.26), and 

applying the Galerkin method, we get the equilibrium equations in the 

form of the nonlinear algebraic equation, as follows 
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  (4.29) 

4.4. Nonlinear buckling analysis 

By extracting x  and y  from the last two of (4.29), and substituting 

into the first of (4.29), the load-deflection relation is obtained. 
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3

2 2
10 0 1 0 3 8

2
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 (4.30) 

 For immovable edges, 0u   on both edges 0 ,x x a and 0v on 

both edges 0 ,y y b . The immovable conditions in the average sense 

are written as follows [2, 7, 8, 102] 

0 0

0





  ,
b a u

dxdy
x

                      (4.31) 

0 0

0





  .
a b v

dydx
y

                     (4.32) 

The expressions of 0 0
,x yN N  can be obtained form Eqs. (4.31) and 

(4.32), by using Eqs. (4.2), (4.7), (4.22) and (4.27), leading to 

 0 1 2 3 4 1
2 ,x x y xN p p pW h W pW            (4.33) 

 0 5 6 7 8 1
2 ,y x y yN p p pW h W pW            (4.34) 

4.4.1. Buckling analysis of FG-CNTRC plates with FG-CNTRC 

stiffeners subjected only to external pressure  

Substituting Eqs. (4.33) and (4.34) into Eq. (4.30), and applying 0xP  , 

the relation between q  and W  is obtained as 
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4.4.2. Buckling analysis of FG-CNTRC plates with FG-CNTRC 

stiffeners subjected to external pressure and axial compression 

In the case 0q , the four edges are movable, coefficient 2
0   is 

applied. Axial compression xP  is determined from Eq. (4.37) 
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  (4.38) 

Consider the second boundary condition, two edges 0,x a  are 

movable, two edges 0,y b  are immovable, 
2

1   is applied, obtained as 
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(4.40)

 

4.6. Applying theoretical results to buckling analysis of FG-CNTRC 

plates with FG-CNTRC stiffeners 

Table 4.2. Effect of CNT direction, stiffener, and thermal temperature on 

the critical axial compression cr

xP  of perfect FG-CNTRC plates (MPa, 

without elastic foundation, FFFF, UD) 

ΔT(K) 

X and Y 

plates without 

stiffeners 

X plates 

and Y 

stiffeners 

X plates 

and X 

stiffeners 

Y plates 

and Y 

stiffeners 

Y plates 

and X 

stiffeners 

0 2.182 4,346 6,704 6,704 4,346 

100 2.119 4.127 6,568 6,568 4.127 

200 2,066 3,910 6,464 6,464 3,910 
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Fig. 4.3. Effect of stiffener direction 

on postbuckling behavior xP W h  

of FG-CNTRC plates 

 
Fig. 4.14. Effect of nonlinear 

foundation stiffness on the 

postbuckling curve xP W h  of 

stiffened plates 

 
Fig. 4.15. Effect of stiffener height 

on the postbuckling curve q W h  

of plates 

 
Fig. 4.18. Effect of stiffener number 

on the postbuckling curve xP W h  

of plates 

4.7. Conclusion of Chapter 4 

Numerical results show some notable points: 

1. FG-CNTRC stiffeners significantly increase the critical axial 

compression and the postbuckling load capacity of the plates. 

2. The effect of the FG-CNTRC stiffeners on the critical axial 

compression of the FG-V plates is the largest. 

3. Nonlinear foundation stiffness does not affect the critical axial 

compression value of perfect plates. 

4. Geometric parameters and thermal temperature significantly affect 

the critical axial compression and the postbuckling curve of the plates. 
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CONCLUSIONS 

The thesis has obtained the following new results: 

1. A method to stiffen FG-CNTRC cylindrical shells and plates with FG-

CNTRC stiffeners, and CNT distribution rules for stiffeners suitable for FG-

CNTRC cylindrical shells and plates are proposed. The improved smeared 

stiffener techniques for the FG-CNTRC stiffeners are developed. The 

stiffening solutions for the FG-CNTRC cylindrical shells with Auxetic core 

and CNT distribution rules for the coatings are proposed. 

2. The governing equations of the nonlinear buckling problem of the FG-

CNTRC cylindrical shells with stiffeners and Auxetic core in thermal 

environment are established. Three-term solutions are chosen to model the 

buckling and postbuckling behavior of two cases: cylindrical shell under 

external pressure and axial compression, and cylindrical shell under torsion. 

3. The governing equations of the nonlinear buckling problem of the 

FG-CNTRC plates with stiffeners on the nonlinear elastic foundation are 

established. The solution form is chosen and the Galerkin method is 

applied to obtain buckling behavior expressions of the plates. 

4 . Theoretical results are applied to analyze the effects of geometric 

parameters, and materials... on buckling and postbuckling behavior. The 

potential of applications in engineering and building design standards for 

FG-CNTRC plates and cylindrical shells in the future is shown. 

RECOMMENDATIONS FOR FURTHER RESEARCH 

1. Buckling and dynamic of FG-CNTRC plates and shells with stiffeners 

or Auxetic core under thermal and combined thermo-mechanical loads. 

2. Nonlinear buckling and dynamic of FG-CNTRC structures with 

oblique FG-CNTRC stiffeners using FSDT and HSDT. 

3. Buckling and dynamics of conical and truncated conical shells, spherical 

shell segment, FG-CNTRC revolution shell... considering stiffening method. 

4. Buckling and dynamic of shells with complex shapes, discrete 

boundary conditions... made of FG-CNTRC considering the stiffening 

methods. 

5. Research and develop the structural design standards for FG-CNTRC 

plates and shells for construction projects. 
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