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INTRODUCTION 
Nonlinear stability and dynamic analysis are important issues in 

structural mechanics, especially with advanced composite materials that 
can withstand large deformations. The nanocomposites with outstanding 
electro-thermo-mechanical properties promise to bring a turning point to 
engineering, requiring the expansion of the working range of structures in 
the large deflection state and with complex anisotropic properties. Today, 
the nanocomposites include FG-CNTRC, FG-GRC and FG-GPLRC, 
which are considered to have great potential in applications. To increase 
the load-bearing capacity of structures, stiffener design is an important 
solution that needs to be studied. The thesis focuses on the nonlinear 
analysis of stability and dynamics of stiffened nanocomposite plates and 
shells to meet modern design requirements. Therefore, this thesis 
researches "Nonlinear analysis of stability and dynamic of nanocomposite 
plates and shells with stiffeners in construction structures".  
Research objectives of the thesis 
1. Propose stiffener options and establish solutions for FG-GPLRC, and 
FG-GPLRC porous cored circular plates and spherical shells. 
2. Propose stiffener options and establish solutions for complex curved 
panels, made of FG-CNTRC and FG-GRC with orthogonal stiffeners. 
3. Propose stiffener options and establish solutions for FG-GPLRC and 
porous FG-GPLRC cylindrical shells with orthogonal and spiral stiffeners. 
4. Analyze the nonlinear stability and dynamic behavior of structures and 
provide comments for the design calculation of construction structures. 
Subject and scope of the thesis research 

Research object: Common plate and shell structures in construction 
structures, such as: Panel, circular plate, spherical, and cylindrical shell. 

Research scope: Nonlinear stability and dynamics problems. 
Research Methodology 

Analytical and semi-annalytical approach. 
Structure of the thesis 
Includes introduction, 4 chapters, conclusion, list of author's scientific 
works and references. 
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Chapter 1. OVERVIEW OF THE RESEARCH PROBLEM 
1.1. Types of materials with variable mechanical properties  
1.1.2. Functionally graded Carbon nanotube reinforced composite 

Carbon nanotubes (CNTs) with high tensile strength and excellent 
electrical and thermal conductivity, are the ideal choice for applications 
that require a material that is both strong and lightweight. Functionally 
graded Carbon nanotube reinforced composite (FG-CNTRC) combines 
an isotropic matrix material and continuously distributed CNTs, 
optimizing the mechanical properties and load-bearing capacity in plates 
and shells. Two popular models for determining the effective thermo-
mechanical properties of FG-CNTRC are the Mori-Tanaka model and the 
rule of mixtures, which effectively support the analysis and design of 
load-bearing structures in harsh conditions. 
1.1.3. Functionally graded Graphene reinforced composite  

Graphene is a two-dimensional carbon material with outstanding 
mechanical, thermal and electrical properties, such as 100 times the strength 
of steel and 10 times the thermal conductivity of copper, making it an ideal 
choice for reinforcing matrix materials. Graphene-reinforced composites 
such as FG-GPLRC, FG-GRC and FG-GRMMC allow for optimization of 
mechanical properties by distributing the graphene volume fraction 
smoothly or piecewise in the structure. Research and application of these 
materials are expanding in many fields such as construction, aerospace and 
electronics, to enhance the strength, heat resistance and weight of structures. 
1.1.4. Potential application of Nanocomposite and Nanocomposite plates 
and shells in construction engineering 
1.1.4.1. Potential applications of Nanocomposites 

Advanced composite materials such as FG-CNTRC, FG-GRC and FG-
GPLRC are attracting attention in the construction industry due to their 
ability to increase durability, reduce weight, improve fire resistance and 
self-healing properties of structures. The application of these materials 
not only helps extend the life and reduce maintenance costs for buildings, 
but also opens up great economic and environmental potential, becoming 
an inevitable trend in the future. 
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1.1.4.2. Potential applications of Nanocomposite plates and shells 
Nanocomposites with their lightweight, durable and superior corrosion 

resistance are being widely used in construction components such as floor 
slabs, roof shells, bridges and high-rise buildings, helping to increase 
durability and reduce maintenance costs. However, high production costs 
are currently a major obstacle to widespread use, but in the future, 
nanocomposites have the potential to replace traditional materials, 
contributing to the sustainable and safe development of the construction. 
1.2. Research situation at home and abroad 
1.2.1. Studies on FGM plates and shells 

Many international authors have studied FGM plates and shells such as 
Shen [124, 129, 130], Sofiyev et al. [143-145], Hong [60], Liu et al. [78], 
Elmhaia et al. [48], Javani et al. [64], He et al. [55], and Vietnamese 
authors [2, 4, 5, 13-20, 32, 33, 38-40, 44-47, 88-91, 93, 108, 111]. 
1.2.2. Studies on FG-CNTRC plates and shells 

Shen et al. [126-128, 131], Kiani [66, 67], Alibeigloo and Liew [7], Lei 
et al. [77], Zeighami and Jafari [170], Salehipour et al. [54], Khayat et al. 
[72], Raissi [119], Mehri et al. [83], Zhao et al. [171], Sobhani and Safaei 
[142], Vietnamese authors [3, 6, 34-36, 41-43, 56-58, 84, 92, 94, 150-154]. 
1.2.3. Studies on FG-GPLRC plates and shells 

Gholami and Ansari [51], Yang et al. [166], Chen et al. [26], Song et al. 
[147], Namazinia et al. [105], Bidzard et al. [21], Chen and Li [25], Barati 
and Zenkour [11], Wang et al. [158, 159], Hu et al. [61], Yang et al. [165], 
Yang et al. [167], Yasin et al. [168], Phuong et al. [114], Ly et al. [81], 
Nam et al. [100, 102]. 
1.2.4. Studies on the FG-GRC and FG-GRMMC plates and shells 

Shen et al. [132-135, 137, 138], Kiani et al. [68-71], Authors of 
University of Transport Technology [1, 29, 30, 87, 95-98, 109, 110, 113, 
115-117]. 
1.3. Results achieved domestically and internationally 

1- Relatively comprehensive analysis of linear and nonlinear static 
stability of FG-CNTRC, FG-GRC and FG-GPLRC plates and shells using 
different methods, and different plate and shell theories. 
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2- Relatively comprehensive investigation of dynamic stability, linear 
and nonlinear vibrations of some FG-CNTRC, FG-GRC and FG-GPLRC 
structures under different loading conditions, using different methods. 

3- Types of stiffeners such as spiderweb stiffener (with circular plates 
and spherical shells), spiral stiffener with cylindrical shells have not been 
focused on previous works. Complex curved panels such as sine, 
parabolic panels with stiffeners have not been researched. 
1.4. Conclusion of Chapter 1 and problems that need further research 
1-  Establish improved stiffener effect leveling techniques for FG-
GPLRC stiffeners with spider and spiral stiffener designs. 
2-  Study on stability and nonlinear dynamics of circular plate and 
spherical shell FG-GLRC with spiderweb stiffeners subjected to 
mechanical and thermal loads. 
3-  Study on stability and nonlinear dynamics of cylindrical panel, 
parabolic panel and sine panel FG-CNTRC and FG-GRC with stiffeners 
FG-CNTRC and FG-GRC respectively subjected to different types of 
loads. 
4-  Study on the stability and postbuckling of static nonlinear stability of 
FG-GPLRC and porous FG-GPLRC cylindrical shells with orthogonal 
and spiral stiffeners. 
Chapter 2. STABILITY AND NONLINEAR DYNAMICS OF FG-
GPLRC CIRCULAR PLATE AND SPHERE STIFFENNESS BY 

SPIDER WEB TENION SYSTEM 
This chapter proposes an analytical algorithm to analyze the 

postbuckling behavior of the proposed spiderweb stiffened circular plate 
and spherical shell. This algorithm extends the Lekhnitskii's smeared 
stiffener technique and uses the energy method. The main points in this 
chapter include the design of the GPL distribution law in the stiffeners 
and circular plate/spherical shell, the spatial design of the spiderwweb 
stiffeners, and the investigation of the influence of parameters on the 
stability and nonlinear dynamic behavior of the structure. 
2.1. Structural and material models 
2.1.1. Structural model 
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The spherical shell has thickness h and radius cR  and base radius oua  

placed on a nonlinear elastic foundation as shown in Figure 2.1. 

 

 

Figure 2.2. Coordinate system and model of the spherical shells and 
circular plate stiffened by three-region spiderweb stiffeners 

2.1.2. Material model 
2.1.2.1. FG-GPLRC spherical shell and circular plate stiffened by FG-
GPLRC spiderweb stiffeners and with piezoelectric layer 

Five GPL distribution types (Fig. 2.3) according to the thickness of 
the shell  2 2vh h z h     are used for GPL volume fractions, as 

   
   

   
   

UD-GPLRC,

4 2 X-GPLRC,

2 4 2 O-GPLRC,

2 V-GPLRC,

2 2 A-GPLRC,

G

v v G

sh
G v v G

v G

v v G

z h h h

z h h h

z h h h

h h z h h



     
        


     
       

              (2.1) 

and for stiffeners 2 2 sth z h h    
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Fig. 2.3. Types of GPL distribution of the spherical shell and stiffeners 

2.1.2.2. FG-GPLRC porous cored spiderweb stiffened FG-GPLRC 
circular plates and spherical shells 

The five laws of GPL mass distribution of the upper layer are as 
follows  2 2cch z h     
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          (2.8) 

The GPL distribution rules of the lower layer and spiderweb stiffeners 
are designed according to the corresponding laws. 
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Fig. 2.4. Design of distribution rules of shell skin layers and stiffeners 

2.2. Basic equations and solution methods 
2.2.1. Basic formulas and equations 

The expressions for extension and moment are derived as 
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The strain energy with thermo-mechanical components, work done 
by external pressure, foundation interactions, and kinetic energy are as 
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     2 2 2
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The Lagrange function is obtained as 

int .T ext                 (2.26) 

Based on boundary conditions (2.27), the solutions are chosen [13] 
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 The potential energy of the system is determined as follows 

2

0
,
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Euler–Lagrange equation combines Rayleigh dissipation function, is 
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   (2.30) 

lead to 
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By solving Eq. (2.31), we obtain the amplitude expression U , then, 
substituting the obtained expression into Eq. (2.32), leads to 
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 The Runge-Kutta method is applied to solve Eq. (2.33). The functions 
q t   and T t    are chosen for the external pressure and thermal load. 

2.3. Numerical results and discussion 

 
(a) (d) 

Fig. 2.6. Effect of stiffeners and type of stiffeners on the postbuckling 
behavior of FG-GPLRC spherical shell/circular plate 

 
(a)                                                  (b) 

Fig. 2.13. Dynamic response to buckling of three-region stiffened 
circular plate and spherical shell under external pressure 

 
(a)                                                 (b) 

Fig. 2.21. Amplitude-time curves of FG-GPLRC circular plates and 
spherical shells with different stiffener types and material parameters 
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2.4. Conclusion of Chapter 2 
From the numerical examples, some notable observations are as follows: 
-  The bifurcation phenomenon was only observed for unstiffened FG-

GPLRC circular plates under thermal loading. 
-  The stiffeners increase the capacity of the spherical shells and circular 

plates, and reduce the snap-through buckling of the spherical shells. 
-  The influence of spiderweb stiffeners on the postbuckling behavior is 

most evident in the thermal postbuckling curve of the circular plates. 
-  Spiderweb stiffeners show outstanding effects in improving natural 

frequency, reducing amplitude and increasing dynamic stability. 
-  The effects of geometric, material parameters, and foundation on the 

stability and dynamic behavior are evident in the numerical examples. 
CHAPTER 3: NONLINEAR STABILITY AND DYNAMICS OF 

FG-CNTRC AND FG-GRC PANELS WITH COMPLEX CURVES 
AND ORTHOGONAL STIFFENERS 

This chapter presents the nonlinear stability and dynamic of parabolic, 
sine and cylindrical panels made from FG-CNTRC and FG-GRC 
stiffened by FG-CNTRC and FG-GRC stiffeners respectively considering 
uniform temperature and piezoelectric layers. 
3.1. Design of geometrical and material parameters of FG-CNTRC 
and FG-GRC cylindrical, parabolic, and sine panels  

Consider cylindrical, parabolic and sine panels, resting on elastic 
foundation, under external pressure and axial loads as shown in Fig. 3.1. 
The geometric radii of the parabolic and the sine panel in the curved 
direction can be easily obtained from Eq. (3.1), as [1] 

 
3 2

3 2 2 2 2 222 4

4
2

16 2

8

/
/ cos
, .

sin
PPs SPs

y
bb y b bR R
yb b
b


 


    
  



      (3.2) 

3.1.1. FG-CNTRC panel with FG-CNTRC stiffeners and piezoelectric 
layer 

CNT distribution rules according to thickness  2 2vh h z h     

expressed through homogeneous or linear functions, as follows 
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Fig. 3.1 . Design model and distribution model of CNTs for stiffened 

panels and piezoelectric layers 
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and for the stiffeners 2 2 sth z h h    
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3.1.2. Model of FG-GRC panel with stiffeners on Pasternak foundation 
The cylindrical, parabolic, sine panels and stiffeners are made from FG-

GRC, with five graphene distribution types including UD, FG-X, FG-V, 
FG-A and FG-O, and three graphene arrangements including (0)10T , 
(0/90)5T and (0/90/0/90/0)S . 
3.2 . Theoretical basis and improved smeared stiffener technique 

Components of extension, moment, and higher order moment of the 
internal mechanical, thermal and electrical force components of the panel 
combined with the anisotropic smeared stiffener technique [1, 6] within 
the framework of HSDT, is obtained as follows 
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 (3.10) 

Combining the forces and moments (3.10) and the condition (3.16), the 
deformation compatibility equation (3.15) is re-represented as 

   
   
   

 

22 66 12 11 21 21

66 11 11 66 66 22 22 66

2
12 12 21 11 22 66

12
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* * * * * *
, , , ,

* * * * * * * *
, ,

* * * * * *
, , , ,

* ,
, , ,

xxxx xxyy yyyy x xxx

x xyy y xxy

y yyy xxxx xxyy xy

xx
yyyy xx yy

A A A A B C

C C B B C C B B

B C C w C C C w w

w
C w w w

R y

          

           

       

    2 0* * *
, , , , , , .xx yy xy xy xx yyw w w w w w  

(3.17) 

3.3 . Boundary conditions, stress function approximation and Euler-
Lagrange equation 

To satisfy the boundary conditions at the four edges, the solutions of 
the deflection, rotation and imperfect of the panel are chosen as 

 

 

*sin sin , sin sin

cos sin , sin cos ,x x y y

w W x y w h x y

x y x y

      
        

   (3.20) 

Due to the complex curvature in the compatibility equation (3.17), it is 
not possible to determine the exact stress function form of the parabolic 
and sine panels. The stress function form is chosen as 

2 2
1 2 3 0 0

1 1
2 2

2 2
cos cos sin sin .y xx y x y N x N y              (3.21) 

An approximate technique to determine the stress function form for 
parabolic and sine panels can be done as follows 
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0 0 0 0 0 0

2  0 2  0  0cos , cos , sin sin .
b a b a b a

x dxdy y dxdy x y dxdy                 

(3.22) 
The strain energy, work done by the external force considering the 

interaction between the panel and the foundation is calculated as follows 

 

31
11

2
32

22
2 0 0

12

1

2
,

e
x x

v

h b a
e

in y y
h v

xy xy xz xz yz yz

d V
T

h

d V
T dxdydz

h

T



  
      

  
          
  
 
        
  

    (3.25) 

 1 2
0 0 0 0

2

0
0 0

1

2

2

, ,

*,
, , ,

b a b a

ext xx yy

b a
x

x x x x

qwdxdy w K w K w w dxdy

w
N w w dxdy

         

 
    

 

   

 
  (3.26) 

Kinetic energy in z direction can be obtained as 
2

2

2 0 0

1

2 , .
h b a

T t
h

w dxdydz


          (3.27) 

The Lagrange function can be represented as 
.T in ext         (3.28) 

The potential energy of damping of the structure using the Rayleigh 
dissipation function can be expressed as 

2

0 0

1

2
.

b a

D w dxdy          (3.29) 

The Euler-Lagrange equations can be applied in combination with 
the Rayleigh dissipation function as follows 

0

0 0

,

, .
x x y y

d D
dt W W W

d d
dt dt

          
     

             

 

 

   (3.30) 
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leads to 

   

  

 
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0,

x y x y
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x y

W h W h W

W W h W h W h W N

N h W N q W W

          

        
 

         

(3.31) 

 
22 23

24 25 0 2

2

6 0 27

1

02 ,

x y

x y

W L L

L W h W L N L N L

    

     
 (3.32) 

 
23

23 24 25 0 26 0 27
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2 0,
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y x y
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W h W N N

  

          
 (3.33) 

The motion equation is received as 

      
      
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W W h W h W h W

       

        

       

  



   

   

   

 

  

            


  (3.37) 

Eq. (3.37) is solved using the fourth-order Runge-Kutta method to 
obtain the dynamic response of the panel. The dynamic critical buckling 
load is determined using the Budiansky-Roth criterion. 
3.4. Numerical results and discussion 

 
(a)                                                   (b) 

Fig. 3.5. Effects of panel type, stiffener orientation, distribution law and 
CNT volume fraction, geometrical rise and environment temperature on 

the static postbuckling curve of the axially compressed panel 
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(a)                                                  (b) 

Fig. 3.11. Amplitude-frequency curves of free and forced vibrations of 
cylindrical, parabolic and sine panels with and without stiffeners 

Table 3.5. Fundamental frequency (rad/s) of (0)10T cylindrical, parabolic 
and sine panels with and without stiffener (FFFF, h =0.002m, 20a b h 
, 2h  , =0, T =100K, 1m n  , 2sth h , stb h , 4std a  = 1K = 

10 MN/m3, 2K = 0.1 MN/m) 

 
Without 
stiffener 

X stiffeners Y stiffeners 
X and Y 
stiffeners 

UD-
UD 

Sine panel 83806.13 108887.78 108581.22 132787.50 
Parabolic panel 83470.90 108642.34 108330.80 132604.56 

Cylindrical panel 83458.89 108634.54 108321.98 132599.03 

X-X 
Sine panel 84913.92 108742.91 107992.01 131078.44 

Parabolic panel 84598.88 108509.79 107752.47 130903.04 
Cylindrical panel 84587.49 108502.28 107743.94 130897.65 

V-A 
Sine  panel 79476.65 109680.63 108732.40 137252.32 

Parabolic panel 79141.97 109457.17 108503.33 137098.93 
Cylindrical panel 79129.88 109450.06 108495.25 137094.41 

A-V 
Sine  panel 80162.03 97257.90 96694.17 113898.69 

Parabolic panel 79826.27 96988.88 96417.01 113680.54 
Cylindrical panel 79814.11 96980.11 96407.06 113673.62 

O-O 
Sine panel 77780.42 100846.02 100102.91 122707.17 

Parabolic panel 77436.37 100594.87 99844.74 122520.36 
Cylindrical panel 77423.93 100586.78 99835.55 122514.63 
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(a)                                                     (c) 

Fig. 3.13. Dynamic instability of cylindrical panels, parabolic panels and 
sine panels with and without stiffeners 

3.5. Conclusion of Chapter 3 
Some important comments are as follows 
- The natural frequency, load-bearing capacity of stiffened panels 

are larger than that of unstiffened panels. The amplitude of stiffened 
panels is significantly smaller than that of unstiffened panels. 

- Load-bearing capacity of the sine panel is larger than that of 
parabolic and cylindrical panels, although not significantly. Similarly, the 
sine panel has a slightly smaller amplitude than other panel types. 

- The critical dynamic instability load and the dynamic instability 
phenomenon of the panel under axial compressive load can only be 
clearly observed for unstiffened panel with symmetrical distribution. 

- Other geometrical and material parameters also significantly affect 
the stability and dynamic behavior of the panel. 
CHAPTER 4: NONLINEAR STATIC STABILITY OF FG-GPLRC 

AND POROUS FG-GPLRC CYLINDRICAL SHELLS WITH 
ORTHOGONAL AND SPIRAL STIFFENERS 

This chapter has applied Donnell shell theory and nonlinear theory to 
establish the basic equations. Ritz energy method is used to analyze the 
postbuckling curves and determine the critical buckling load. 
4.1. Structural and material models 
4.1.1. Model 1: Porous FG-GPLRC cylindrical shell with orthogonal 
stiffeners 

The stiffened cylindrical shell is subjected to external pressure q . 
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Fig. 4.1. Model and geometric parameters of orthogonally stiffened 

porous FG-GPLRC cylindrical shell 
Three types of porosity distributions (PC1, PC2 and PC3) are 

considered in this chapter and the elastic modulus of the shell is expressed 

 
  

1 1

1 2

1 3

1 PC1

1 1 PC2

PC3

cos ,

cos ,

,

sh

E e z h

E E e z h

E e

          



        (4.5) 

and for the stiffeners 

 2

3

PC1

1 PC2

PC3

,

,

,

m

st m

m

E

E E e

E e


 



                    (4.7) 

in which 1e , 2e , and 3e  are the porosity ratios. 

4.1.3. Model 2: FG-GPLRC cylindrical shell with spiral FG-GPLRC 
stiffeners 

The five distributions of GPL are UD, FG-X, FG-O, FG-V and FG-Λ 
distributions for the shell and stiffeners are written similarly to chapter 2 
when given as 0vh  , specifically as follows 

- UD-UD  distribution (UD shell with UD stiffeners) 

,sh
G G    for the shell,         (4.9) 
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    ,st
G G    for stiffeners,          (4.10) 

X-X distribution (FG-X shell with FG-X stiffeners) 

4 ,sh
G Gz h  for the shell,       (4.11) 

 2 4 2 ,s
st
G Gth z h     for stiffeners,      (4.12) 

 

 
Fig. 4.2. Configuration, coordinate system and material distribution of 

FG-GPLRC cylindrical shell and spiral FG-GPLRC stiffeners 
O-O distribution (FG-O shell with FG-O stiffeners) 

 1 2 ,sh
G Gz h    for the shell,       (4.13) 

 2 4 2 2 ,st
st
G Gz h h      for stiffeners,    (4.14) 

V-A distribution (FG-V shell with FG-A stiffeners) 

 1 2 ,sh
G Gz h    for the shell,        (4.15) 

 2 ,s
st
G Gtz h h   for stiffeners,      (4.16) 

A-V distribution (FG- A sheath with FG-V stiffeners) 

 1 2 ,sh
G Gz h   for the shell,        (4.17) 

 2 2 ,st
G Gsth z h     for stiffeners,      (4.18) 

4.2. Governing equation system 
The internal force of the shell has the form 
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                                                  

      (4.23) 

Orthogonal stiffeners can be achieved by using the smeared stiffener 
technique for the FG-GPLRC stiffener, by 
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 (4.26) 

Combining the coordinate system transformation technique with the 
FG-GPLRC smeared stiffener technique, lead to 

4 2 2
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 (4.27) 

4.3. Boundary conditions and stress functions 
The popular deflection form of the cylindrical shell is [4] 
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   2
0 1 2, sin sin sin ,

m x ny m x
w x y f f f

L R L
 

     (4.32) 

4.4. Ritz energy method 
For cylindrical shells, the closed condition must be satisfied, as 

  
2 2

0 2

0 0 0 0

1
0

2, , .
R L R L

y y y

w
v dxdy w dxdy

R

        
         (4.34) 

The total potential energy of the shell can be determined by 

 
2 22

0 0 0 0
2

1

2
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

                  (4.36) 

Apply the Ritz method, as follows 

0 1 2

0.
f f f
  

  
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        (4.37) 

Combining Eq. (4.37) with the closed condition (4.35), leads to 
2

11 0 12 1 13 2 02 0,f f f q           (4.38) 
2 2

21 0 22 1 23 2 24 2 26 0,f f f f            (4.39) 
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31 0 32 1 33 1 2 34 2 0,f f f f f q            (4.40) 

The maximum deflection is in terms of amplitude 2f , as follows 
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 (4.41) 

Amplitude 0f  and 2f  obtained from Eqs. (4.38) and (4.40), then 

substituting these amplitudes into expression (4.39), lead to 
3 2

11 2 12 2 13 2 18

15 2 17

,q
f f f

f
      

 
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      (4.42) 

The postbuckling curve maxW - q  is determined by combining the 

relations maxW - 2f  and 0q - 2f . 
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4.5. Numerical results and discussions 
Table 4.3. Critical buckling load of stiffened porous FG-GPLRC 

cylindrical shells with different porosity distributions and ratios (MPa, 

1 5.L R  , 100R h  , h =0.04m, GPLW =0.6% , 1 5.stXD stYDh h h  , 

stXD stYDb b h  , 5stXD stYDd d h  ) 

 1e  0 0.1 0.2 0.3 0.5 

Without 
stiffener 

PC1 1.178(1.7) 1.129(1.7) 1.080(1.7) 1.030(1.7) 0.932(1.7) 
PC2 1.178(1.7) 1.059(1.7) 0.942(1.7) 0.828(1.7) 0.613(1.7) 
PC3 1.178(1.7) 1.103(1.7) 1.027(1.7) 0.950(1.7) 0.793(1.7) 

Orthogonal 
stiffener 

PC1 3.779(1.6) 3.687(1.6) 3.592(1.6) 3.477(1.5) 3.174(1.5) 
PC2 3.779(1.6) 3.275(1.6) 2.769(1.6) 2.262(1.6) 1.251(1.6) 
PC3 3.779(1.6) 3.538(1.6) 3.294(1.6) 3.048(1.6) 2.544(1.6) 

 
(a)                                                                 ( c ) 

Fig. 4.3. Effect of porous FG-GPLRC stiffeners on the postbuckling 
response of porous FG-GPLRC cylindrical shells 

Table 4.4. Critical buckling load of FG-GPLRC cylindrical shell without 
stiffeners, with orthogonal stiffeners and spiral stiffeners 

  
Without 
stiffener 

Orthogonal 
stiffener 

Spiral stiffener 

UD-UD 2.0504(1,7) 11.6329(1,5) 15.6318(1,4,42,70.47)* 

X-X 2.1871(1,6) 11.8650(1,5) 15.8350(1,4,42,70.47) 
A-V 2.0218(1,7) 10.6680(1,5) 14.3298(1,5,42,70.47) 
V-A 2.0115(1,7) 12.5163(1,5) 16.4522(1,4,42,70.47) 
O-O 1.8645(1,7) 11.3340(1,5) 15.2994(1,5,42,70.47) 
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(a)                                                                 ( b ) 

Fig. 4.5. Effect of stiffener type and material parameters on the 
postbuckling response of FG-GPLRC cylindrical shell 

 
( c ) (d) 

Fig. 4.6. Effect of geometric parameters of shell and stiffeners on the 
postbuckling response of FG-GPLRC cylindrical shell 

4.6. Conclusion of chapter 4 
Some of the observations that can be made are as follows: 

1) The stiffeners have a large influence on the critical load and 
postbuckling behavior. The effect of spiral stiffeners is significantly 
greater than that of the corresponding orthogonal stiffeners. 

2) Snap-through phenomenon can be clearly observed in orthogonally 
stiffened and spirally stiffened cases, and is more difficult to observe 
in unstiffened cases and is most evident in the spirally stiffened case. 

3) Effects of geometry, material properties, porosity ratio, porosity 
distribution and GPL mass fraction on the critical buckling load and 
postbuckling curves of FG-GPLRC and stiffened porous FG-GPLRC 
cylindrical shells can be observed. 
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CONCLUSIONS 
The thesis has obtained the following new results: 
1. Proposed stiffener dessign and developed an improved smeared 

stiffener technique for the FG-GPLRC and porous cored FG-GPLRC 
circular plates and spherical shells with two- and three-region spiderweb 
stiffeners. Developed analytical and semi-analytical solutions based on 
Donnell shell theory and energy method for the stability and nonlinear 
dynamics of structures subjected to mechanical and thermal loads. 

2. Proposed stiffener dessign and establish solution for panels with 
complex curvature, including cylindrical, parabolic and sine panels made 
of FG-CNTRC and FG-GRC by orthogonal FG-CNTRC and FG-GRC 
stiffeners respectively, according to HSDT and energy method.  

3. Proposed stiffening method and built solution for porous FG-GPLRC 
and FG-GPLRC cylindrical shell structure by orthogonal and spiral 
stiffeners system of porous FG-GPLRC and FG-GPLRC respectively 
according to Donnell shell theory and energy method. 

4. Applied the results of analytical and semi-analytical approaches to 
analyze in detail the effects of stiffeners in the corresponding problems, 
elastic foundation, imperfections of circular plates and spherical shells 
FG-GPLRC, and panels with complex curvatures FG-CNTRC and FG-
GRC, geometric dimensions,... on the static, dynamic stability and 
nonlinear vibration behavior of plates and shells. 

RECOMMENDATIONS FOR FURTHER RESEARCH 
1. Study on stability and nonlinear dynamics of stiffened nanocomposite 
spherical shell and circular plate based on shear deformation theories. 
2. Study on stability and nonlinear dynamics of stiffened nanocomposite 
shells with complex curvature in two directions. 
3. Study on stability and nonlinear dynamics of stiffened nanocomposite 
cylindrical shells and drum shells based on shear deformation theories. 
4. Study on stability and nonlinear dynamics of stiffened nanocomposite 
plates and shells subjected to complex loads. 
5. Research and develop design standards for stiffened nanocomposite 
shell panels with stiffeners for construction works. 
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